US009087051B2

a2z United States Patent (10) Patent No.: US 9,087,051 B2
Elahi et al. (45) Date of Patent: Jul. 21, 2015
(54) PROGRAMMABLE PERIPHERAL (56) References Cited

INTERCONNECT

(71)  Applicant: NORDIC SEMICONDUCTOR ASA,
Trondheim (NO)

(72) Inventors: Junaid Elahi, Oslo (NO); Joar Olai
Rusten, Trondheim (NO); Lasse Olsen,
Trondheim (NO); Lars Sundell, Moss
(NO)

(73) Assignee: NORDIC SEMICONDUCTOR ASA,
Trondheim (NO)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 11 days.

(*) Notice:

(21) Appl. No.: 14/351,870

(22) PCT Filed: Dec. 6, 2012

(86) PCT No.: PCT/GB2012/053025
§371 (o)D),
(2) Date: Apr. 14, 2014

(87) PCT Pub. No.: W02013/088121
PCT Pub. Date: Jun. 20, 2013

(65) Prior Publication Data
US 2014/0304439 Al Oct. 9, 2014
(30) Foreign Application Priority Data
Dec. 12,2011 (GB) .ocevevvveecnececneenene 11212925
(51) Imt.ClL
GO6F 3/00 (2006.01)
GO6F 13/28 (2006.01)
(Continued)
(52) US.CL
CPC ....cccee. GO6F 13/287 (2013.01); GO6F 13/24

(2013.01); GO6F 13/385 (2013.01); Y02B
60/1228 (2013.01)
(58) Field of Classification Search
CPC ..... GOG6F 13/287; GOG6F 13/385; GOGF 13/24;
YO02B 60/1228
See application file for complete search history.

U.S. PATENT DOCUMENTS

5,579,531 A * 11/1996 Sugita ......ccocceevevrennnenene. 710/51
6,286,060 B1* 9/2001 DiGiorgio et al. .............. 710/31
(Continued)

FOREIGN PATENT DOCUMENTS

EP 0738978 Al  10/1996
EP 0811922 Al 12/1997
(Continued)
OTHER PUBLICATIONS

Notification of Transmittal (PCT/ISA/220) of the International
Search Report (PCT/ISA/210) and the Written Opinion of the Inter-
national Searching Authority (PCT/ISA/237) for PCT/GB2012/
053025 mailed Mar. 4, 2013.

(Continued)

Primary Examiner — Jing-Yih Shyu
(74) Attorney, Agent, or Firm — Koppel, Patrick, Heybl &
Philpott

(57) ABSTRACT

Peripherals (18, 20, 22, 24, 26) are connected to a processor
(6) and a programmable peripheral interconnect (10) is con-
nected to each peripheral. One of the peripherals (18) is
configured to signal an event to the interconnect, and one of
the peripherals (20) is configured to respond to a task signal
from the interconnect by performing a task. The task-receiv-
ing peripheral (20) has a task register (40), addressable by the
processor (6), and performs the task in response to a change in
the contents of the register (40). The interconnect (10)
accesses amemory (14) in which a mapping is stored between
an event of a first peripheral (18) and a task of a second
peripheral (20), the mapping comprising (i) an identification
of the event, and (ii) the address of a task register (40). The
mapping causes the interconnect (10) to provide a channel by
sending a task signal to the second peripheral (20) in response
to a signal of the event from the first peripheral (18).

32 Claims, 6 Drawing Sheets

]

AEQ {everty

AEY feveat)

#91 channel
EEP TEP
£70 3gask)
Task

Evest signal
tookup table sgnal

fochup table

I

event select

task select

e[ —— oEMux




US 9,087,051 B2

Page 2
(51) Int.ClL WO WO02009077341 Al 6/2009
GO6F 1324 (2006.01) WO W02011045678 Al 4/2011
GO6F 13/38 (2006.01) WO WO02011067507 Al 6/2011
OTHER PUBLICATIONS
(56) References Cited

U.S. PATENT DOCUMENTS

7,281,066 B2* 10/2007 Raderetal. ................. 710/51
7,562,162 B2* 7/2009 Kreiner et al. . 710/11
8,756,357 B2* 6/2014 Oyamaetal. ................ 710/260

FOREIGN PATENT DOCUMENTS

EP 1988460 A1  11/2008
FR 2953307 Al 6/2011
WO WO002054212 A2 7/2002

“AVR1001: Getting Started with the XMEGA Event System; 80-bit
AVR Microcontrollers”, Amtel Corporation, Rev. 8071 A-AVR-02/
08.

“EFM32 Peripherals; High Performance Peripherals”, Energy Micro
AS, Norway, dated Nov. 18, 2011. http://www.energymicro.com/
technology/efm32-peripherals.

“EFM32 Peripheral Reflex System; AN0025—Applicationnote”,
Energy Micro AS, Norway, Oct. 21, 2011—an0025 Rev1.02. www.
energymicro.com.

* cited by examiner



U.S. Patent Jul. 21, 2015 Sheet 1 of 6 US 9,087,051 B2

N/ <l'| ‘\g

5
J
[ 0

Figure 1

nono

0|

8
\
fulafs

(o]

X
noh




US 9,087,051 B2

Sheet 2 of 6

Jul. 21, 2015

U.S. Patent

Z 2inbi4
€
029X0 00€X0 4
009X0 001X0 /A
18jsibay] yse | J18jsibay Jusng # buiddepy




U.S. Patent

Jul. 21, 2015

Sheet 3 of 6

US 9,087,051 B2

£L.

]

IS
A

vanse]

i1
1L
-

FF] channe] ¥

(3.
LLl
[ 20ed

iL.
LU
[

Figure 3

Pangheral B

s




US 9,087,051 B2

Sheet 4 of 6

Jul. 21, 2015

U.S. Patent

& ainbi4

HRERT

135[98 yau

F 3

2|0 dnyoo
s

$EE L

s

[SRBREYD fod

A

E

fpeaal 039

A

3

=A2

di
2.
13
]
¥

2 dnyosy

WEbE 3838

SREEER OOy

W e

k:

(4N QLY




US 9,087,051 B2

Sheet 5 of 6

Jul. 21, 2015

U.S. Patent

SIFWOHG

NIWOHD

SIGHS

NITHD

d31 UHD

A431 LHD

431 OHG

G ainbi

it
WSHD
it
L OoOHD

]

1

MNIHD

1

i
1

433 UHD

433 1HD

433 OHD



US 9,087,051 B2

Sheet 6 of 6

Jul. 21, 2015

U.S. Patent

210D

[eJeydued

d

RS RIVAI R | i

i

e
Oiu| 0L

T A a

W

HEYL

Figure 6

tdd 91

rrrns,

.,

bedod WhCHD




US 9,087,051 B2

1
PROGRAMMABLE PERIPHERAL
INTERCONNECT

This invention relates to communication between periph-
erals connected to a processor.

Microcontroller systems typically comprise a number of
peripherals, which are distinct from a central processing unit
(CPU), but are connected to it, typically by a bus. These
peripherals may be located on the same integrated circuit as
the processor (e.g. as a system-on-chip) or within the same
multi-chip module or system-in-package. Alternatively,
peripherals may be located off-chip from a main processor,
e.g. in a different package. Examples of peripherals include a
timer, a cryptographic encryption engine, a serial interface
(UART), and an embedded radio transceiver.

In a simple architecture, the processor communicates
directly with each peripheral. Communication from one
peripheral to another is accomplished via the processor, e.g.
using interrupts. This mechanism can, however, be slow and
lead to unpredictable timings, since the processor may have to
wake from a low-power (sleep) state or complete an existing
operation before it can relay a message. If the processor is in
a sleep state, a communication from one peripheral to another
may also result in significant energy consumption due to
waking the processor.

Attempts have been made to address these shortcomings by
enabling one peripheral to communicate directly with
another. For example, an interconnect apparatus may support
a number of channels, each of which can be configured by a
processor to receive signals from a signal-producing periph-
eral (e.g. using a multiplexer) and to send signals directly to
selected signal-receiving peripherals.

However the Applicant has realised that such attempts can
be improved upon.

Thus, from a first aspect, the invention provides a periph-
eral communication system comprising:

a processor;

a plurality of peripherals, connected to the processor; and

a programmable peripheral interconnect, connected to

each peripheral,
wherein:

at least one of the peripherals is event-generating, being

configured to signal an event to the programmable
peripheral interconnect;
at least one of the peripherals is task-receiving, being con-
figured to respond to a task signal from the program-
mable peripheral interconnect by performing a task;

said task-receiving peripheral comprises a task register,
addressable by the processor, associated with the task,
and is configured to perform the task in response to a
change in the contents of the task register;
the programmable peripheral interconnect is configured to
access a memory in which a mapping can be stored
between an event of a first peripheral and a task of a
second peripheral, the mapping comprising (i) an iden-
tification of the event of the first peripheral, and (ii) the
address of a task register associated with the task; and

the programmable peripheral interconnect is configured so
that, if a mapping is stored in memory between an event
of a first peripheral and a task of a second peripheral, the
interconnect will provide a channel by sending a task
signal to the second peripheral in response to a signal of
the event from the first peripheral.

From a second aspect, the invention provides a program-
mable peripheral interconnect configured for connection to
each of a plurality of peripherals, wherein:

20

25

35

40

45

2

at least one of the peripherals is event-generating, being
configured to signal an event to the programmable
peripheral interconnect;
at least one of the peripherals is task-receiving, being con-
figured to respond to a task signal from the program-
mable peripheral interconnect by performing a task;

said task-receiving peripheral comprises a task register,
addressable by a processor, associated with the task, and
is configured to perform the task in response to a change
in the contents of the task register;
the programmable peripheral interconnect is configured to
access a memory in which a mapping can be stored
between an event of a first peripheral and a task of a
second peripheral, the mapping comprising (i) an iden-
tification of the event of the first peripheral, and (ii) the
address of a task register associated with the task; and

the programmable peripheral interconnect is configured so
that, if a mapping is stored in memory between an event
of a first peripheral and a task of a second peripheral, the
interconnect will provide a channel by sending a task
signal to the second peripheral in response to a signal of
the event from the first peripheral.

From a third aspect, the invention provides a method of
configuring a connection between an event of a first periph-
eral and a task of a second peripheral in a peripheral commu-
nication system as set out above, comprising storing a map-
ping in memory comprising (i) an identification of the event
of the first peripheral, and (ii) the address of a task register
associated with the task of the second peripheral.

It will be seen by those skilled in the art that, in accordance
with the invention, a programmable peripheral interconnect
(PPI) allows an event signal from one peripheral to trigger a
task in another peripheral, without needing to involve the
processor. This can provide substantial power savings by
allowing the processor to remain in a sleep state while periph-
erals communicate directly with each other. It can also enable
quicker communication between peripherals. Importantly, a
PPI embodying the present invention uses the address of a
register on a task-receiving peripheral to define a channel to
that peripheral. Thus, rather than having to send obscure
peripheral and task identifiers as control signals to the inter-
connect apparatus in order to configure a channel, embodi-
ments of the present invention allow firmware running on the
processor to establish a channel easily and conveniently by
using a familiar register address of the task-receiving periph-
eral.

Such an arrangement can provide considerable additional
convenience for the programmer of firmware for the proces-
sor, since the same register addresses can be used for access-
ing task-receiving peripherals directly from the processor
(e.g. via writes to the relevant task registers), and also for
configuring a channel in the PPI by mapping the task register
address to an event. This avoids the programmer having to
refer to and use two different naming systems for the same
task.

A manufacturer of products embodying the invention can
easily re-engineer a design to add another peripheral simply
by allocating addresses from a block of unused addresses to
one or more registers associated with the peripheral. Simi-
larly, peripherals can easily be removed from a system, with-
out having to renumber a peripheral indexing system between
different product variants. This can aid firmware interoper-
ability across different versions of the system by maintaining
consistent addressing in the PPI across versions.

The event-generating peripheral may comprise an event
register, addressable by the processor, associated with the
event. While the event register may be located immediately



US 9,087,051 B2

3

adjacent logic associated with the peripheral on an integrated
circuit, this is not essential and it may be situated some
distance away from other elements of the peripheral; the same
is true for the task register. The registers may comprise any
suitable memory structure.

The association between the event register and the event
may be such that the system is configured to respond to a
change in the contents of the event register as if the peripheral
had signalled the event. Such an event register may be written
to by the processor to simulate an event issuing from the
peripheral, for example. The peripheral may change the con-
tents of the event register itself when signalling an event; for
example, by writing a binary ‘1” to the event register when-
ever it signals an event.

In some preferred embodiments, the aforesaid identifica-
tion of the event of the first peripheral in the mapping is the
address of an event register associated with the event. In this
way, the benefits of using register addresses in the mapping
are extended to the event-register also, and a channel can be
configured simply by storing two register addresses in
memory. Firmware running on the processor might do this via
a function call or might write the addresses directly to the
memory where the mapping is stored. This is not essential,
however, and the identification of the event of the first periph-
eral could comprise a peripheral identifier and an event or
signal line identifier, unrelated to the address of any associ-
ated event register which may or may not be present.

The peripheral interconnect is programmable in the sense
that it can be programmed or configured to define connections
between peripherals using one or more mappings. The PPI
need not necessarily comprise a processing unit for executing
software instructions, although it may do so.

The peripherals are not limited to any particular type, and
may include such peripherals as: a timer, a UART, a voltage
comparator, an encryption engine, an analogue-to-digital
converter (ADC), a digital-to-analogue converter (DAC), a
radio transmitter, a radio receiver, and so on. An event may be
signalled from a peripheral in response to any input, change
of'state, satisfying of a criterion, etc., as will be familiarto one
skilled in the art. The tasks may be any function or operation
which can be performed by the peripheral, such as transmit-
ting data over an interface.

The PPI may be connected to the peripherals by respective
lines for each event and task over which event and task signals
can be sent; i.e. one line for each event or task. The signals
may be pulses or encoded values. Incoming lines may con-
nect to one or more multiplexers within the PPI; e.g. with one
multiplexer for each channel. Outgoing lines may leave from
one or more demultiplexers within the PPI; e.g. with one
demultiplexer for each channel. The PPI may be configured to
set or control a multiplexer and a demultiplexer of a channel
in accordance with a mapping stored in memory.

In some alternative embodiments, the PPI may access the
task registers or event registers, or both, of peripherals over a
bus, e.g. over an address bus using memory-mapped input/
output (MMIO). The PPI may thus receive an event signal
through a change in the contents of the associated event
register and/or may send a task signal by changing the con-
tents of the associated task register. The PPI may be con-
nected to a bus (e.g. a system bus which may comprise an
address bus, data bus and control bus) to which the processor
is also connected. The same bus may connect the peripherals
to the processor. The PPI may detect a change in the contents
of an event register by reading the event register at intervals;
e.g. regular polling; or by receiving an interrupt from the

10

15

20

25

30

35

40

45

50

55

60

65

4

event-generating peripheral. On receiving an interrupt, the
PPI may then read the contents of a corresponding event
register.

An event register or task register may contain a single bit
(i.e. for signalling a flag or binary signal), or it may comprise
a plurality of bits, e.g. 8, 16 or 32 bits.

The memory mapping may take any suitable form. In some
embodiments, the address of an event register and the address
of a task register, or pointers to these registers, are stored as
related entries in an array, table or database. For example, the
PPI may maintain a table having a number of rows, each
corresponding to a different channel, and two columns, the
first for identifying an event register and the second for iden-
tifying a task register. It will be appreciated such an array or
table can be a logical construct and need not necessarily be
limited to any particular physical locations of the data in
memory. The PPI may comprise a first set of registers for
storing task-register addresses and a second set of registers
for storing event-register addresses. There may be an equal
number of registers in each set. A register in the first set may
control a multiplexer which is connected to a demultiplexer
controlled by a corresponding register in the second set,
thereby defining a channel.

The memory may be separate from the PP, e.g. in a sepa-
rate region of silicon or on a different chip, but is preferably an
integrated component of the PPI, which can reduce access
times. The memory may be volatile (e.g. RAM) or non-
volatile (e.g. EEPROM or flash). The mappings are prefer-
ably stored in one or more registers which are preferably
addressable by the processor. Each channel provided by the
PPI may have one associated event end-point register and one
associated task end-point register, which may be suitable for
storing an address of a peripheral event register and an
address of a peripheral task register respectively. Some of the
channels may use these registers to store other types of event
and/or task identifiers.

The mapping or mappings may be written to the memory
by the PPI or by the processor, or by both. The processor may
indirectly establish a channel between peripherals by
instructing the PPI to store the appropriate mapping.

The PPI preferably comprises, or can access, one or more
lookup tables which it can use to look up a register address
from a mapping in order to determine a particular event line or
task line (or event port or task port) corresponding to that
register address. It may then select the line or port as input or
output for a channel (e.g. by controlling a multiplexer or
demultiplexer appropriately). The lookup table may take any
suitable form, and need not necessarily be implemented as a
physical table in memory.

The PPI may support any number of channels; e.g. 1, 8, 16,
32 or more. A channel can be any physical (e.g. electrical) or
logical connection between an event input port or line to the
PPI and a task output port or line from the PPI. A channel may
link one or more inputs to one or more outputs (e.g. using
logic gates to define branches or forks along the channel
path).

The PPI preferably comprises a mechanism for allowing a
channel to be enabled and/or disabled. The PPI may comprise
a bit-field register, having one bit associated with each chan-
nel, and be configured so that a channel is enabled if its
associated bit in the bit-field register is set to a predetermined
value (e.g. a binary 1).

In some preferred embodiments, the PPI comprises a
mechanism for collectively enabling and disabling a group of
one or more channels. The PPI may comprise one or more
registers or memory areas, each capable of storing a plurality
of channel identifiers for defining a respective group of chan-



US 9,087,051 B2

5

nels. Such a group register may, for example, be a bit-field
with each bit position corresponding to a different one of the
channels; a binary 1 in the bit position may include that
channel, while a binary 0 may exclude that channel (or the
other way round). The system may be configured so that a
single instruction or action by the processor can cause all the
channels in a group to be enabled or disabled by the PPI; for
example, by setting a bit corresponding to the appropriate
group in a group-enable bit-field register on the PPI.

The PPI may be configured to receive a task signal from the
processor and to enable or disable a particular group of chan-
nels in response. The PPI may comprise an incoming group-
enable task signal line and an incoming group-disable task
signal line for each group. Particularly advantageously, the
PPImay be such that it can be configured or programmed (e.g.
by the processor) so that a group of channels can be enabled
or disabled in response to the PPI receiving an event signal
from a peripheral. Each group enable and disable task may
have an associated register address and be configurable using
mappings in the PPI in the same way as for peripheral tasks.

The ability to configure the PPI to enable and disable a
channel or group of channels in response to a peripheral event
allows very flexible configuration. It can be used to avoid
conflicts between tasks. For example, the PPI may first map a
timer event to a task to disable a radio receiver (e.g. to save
power by switching the radio off after a period of time). The
PPI may secondly map a “disabled” event from the radio
receiver to a task to enable the radio (e.g. to switch the radio
on automatically when it starts to receive radio data). How-
ever, a problem can arise in that the timer may switch the radio
offwhile it is still receiving radio data. By additionally having
a third mapping between the “disabled” event from the radio
receiver and a group-disable task on the PPI, where the group
contains the channel implementing the first mapping, this
conflict can be avoided. (Of course, the channel group should
subsequently be re-enabled at an appropriate time).

The peripheral communication system will typically be
part of a larger system, in which the processor performs
control tasks. For example, a peripheral communication sys-
tem embodying the invention may form part of a radio trans-
ceiver, such as a radio-on-a-chip.

An event-generating peripheral may have more than one
event register. Similarly, a task-receiving peripheral may have
more than one task register.

The PPI may be configurable to respond to an event signal
by sending two or more task signals, possibly to different
task-receiving peripherals. In some embodiments this may be
accomplished by storing multiple mappings, each mapping
the associated event register to a different one of the associ-
ated task registers. In other embodiments, it may be accom-
plished by storing a mapping which maps three or more
associated registers together; e.g. by having a table in
memory with three of more columns. Preferably the PPI can
send multiple task signals simultaneously (e.g. within a single
clock cycle).

Similarly, the PPI may be able to map a plurality of event
registers to a single task register. As before, this may be by
means of multiple mappings, or by a single mapping which
relates to three or more registers.

In some embodiments, the PPI may comprise logic for
sending a task signal when or only when a criterion relating to
two or more event signals is met; e.g. once both event signals
are next received.

The first and second peripherals will typically be different
peripherals, although they may be the same. To configure the
system so that an event generated by a peripheral is acted on
by the same peripheral, the PPI may store a mapping between

10

15

20

25

30

35

40

45

50

60

65

6

an associated event register and an associated task register
belonging to the same peripheral. However, the present inven-
tors have realised that, even though routing events via the PPI
is more efficient than when involving the processor, the PPI
still takes some time to channel event signals. Thus, in one set
of embodiments, the system can be configured so that, for at
least one of the peripherals, an event signal sent from the
peripheral is received as a task signal by the same peripheral
without passing through the PPI. This may be implemented,
for example, by a physical or logical switch connecting an
event line leading from the peripheral to a task line leading
towards the peripheral. This switch may be arranged to be
closed or open depending on a value in a register; for example,
a single bit in a register. This register may be written to by the
processor or by the PPL.

This idea is believed to be new and inventive in its own
right, and therefore, from a further aspect, the invention pro-
vides a peripheral communication system comprising:

a processor;

a plurality of peripherals, connected to the processor; and

a programmable peripheral interconnect, connected to

each peripheral,
wherein:

at least one of the peripherals is event-generating and can

signal an event to the programmable peripheral intercon-
nect;

at least one of the peripherals is task-receiving, and can

receive a task signal from the programmable peripheral
interconnect and perform a task in response to receiving
the task signal;

the programmable peripheral interconnect can be config-

ured to send a task signal to a task-receiving peripheral
in response to receiving an event signal from an event-
generating peripheral; and

at least one of the peripherals is both event-generating and

task-receiving and the system can be configured so that
the peripheral will perform a task in direct response to an
event generated by the peripheral, without the peripheral
receiving a task signal from the processor or program-
mable peripheral interconnect.

From another aspect, the invention provides a peripheral
communication method for use in a system comprising:

a processor;

a plurality of peripherals, connected to the processor; and

a programmable peripheral interconnect, connected to

each peripheral, the method comprising:

one of the peripherals signalling an event to the program-

mable peripheral interconnect, the programmable
peripheral interconnect sending a task signal to a task-
receiving peripheral in response, and the task-receiving
peripheral receiving the task signal and performing a
task in response; and

one of the peripherals generating an event signal and per-

forming a task in direct response to the event signal,
without receiving a task signal from the processor or
programmable peripheral interconnect.

It will be seen that the system provides a shortcut mecha-
nism for at least one peripheral, whereby communication
with the PPI can be bypassed when the peripheral is set to
respond to its own event signal. Configuring the PPI to estab-
lish channels between peripherals may be undertaken by the
processor, as described previously. The configuring of the
system to cause the peripheral to respond directly to its own
event signal may be performed by the PPI or by the processor;
e.g. by one of more instructions issued from the processor, or
by one or more register accesses performed by the processor.
In a similar manner, the configuration may be changed so that



US 9,087,051 B2

7

the peripheral will no longer perform a task in direct response
to an event generated by the peripheral.

The system may comprise a shortcut path between an event
path or line leading from the peripheral towards the PPI and a
task path or line leading into the peripheral from the PPI. This
shortcut path may be an electrical line comprising a switch to
open or close the path. The switch may be implemented in any
suitable manner. The switch may be controlled by a bit posi-
tion in a register, addressable by the processor. Where the
signals are pulses, the shortcut path and the task path from the
PPI may both enter a logical OR gate, the output of which
leads towards the peripheral. The shortcut path may form part
of the peripheral, or it may be a separate element of the
system.

Features described elsewhere in connection with other
aspects or embodiments of the invention may be optional
features of this aspect also.

In one example system, the peripheral is a timer which is
able to receive a start task and respond by starting counting
from zero, and which is also able to signal an overflow event
when its counter overflows. The processor may be instructed
to configure the system so that the timer automatically restarts
counting from zero when its counter overflows, rather than
simply stopping counting. To do this, it may instruct the
programmable peripheral interconnect to create a channel
between the timer’s overflow event and its start task. The PPI
may recognise that the event and task belong to the same
peripheral and, instead of creating a channel as it would
between two different peripherals, may enable a shortcut path
which causes the timer to perform its start task in response to
generating its overflow event. Alternatively, the processor
may enable the shortcut path itself. In either case, the restart-
ing of the timer can happen more quickly (i.e. in few clock
cycles) than if the communication were routed via the PPI or
the processor.

This shortcut mechanism may be used in combination with
the previously-described register-based communication sys-
tem, or in any appropriate known arrangements.

A peripheral may have one or more predefined (i.e. hard-
wired) shortcut paths, which can simply be enabled and dis-
abled by firmware on the processor.

Alternatively, shortcuts may be programmable. For
example, the peripheral may comprise a multiplexer and/or
demultiplexer. It may be configured to access a memory in
which a mapping between an event register address of the
peripheral and a task register address of the peripheral can be
stored. This memory may be separate from the peripheral, but
is preferably part of the peripheral, to speed up read access to
the mapping by the peripheral. The mapping or mappings
may be similar to those ofthe PPI described above and may be
used similarly.

Any preferred or optional feature of one aspect of embodi-
ment described herein may, wherever appropriate, be used in
any other aspect or embodiment. Embodiments may contain
preferred or optional features in any appropriate combina-
tions.

Certain preferred embodiments of the invention will now
be described, by way of example only, with reference to the
accompanying drawings, in which:

FIG. 1 is a schematic drawing showing components of a
first system embodying the invention;

FIG. 2 is a table representing a memory structure storing
mappings between peripheral registers;

FIG. 3 is a schematic drawing of several peripherals con-
nected to a PPI in a second system embodying the invention;

FIG. 4 is a schematic drawing of elements relating to a
particular channel within the PPI;

10

20

25

30

35

40

45

50

55

60

65

8

FIG. 5 is a schematic drawing of the channel- and group-
enable and disable mechanisms within the PPI; and

FIG. 6 is a schematic drawing showing peripheral event
and task registers, and the shortcut mechanism for a periph-
eral.

FIG. 1 shows amicrocontroller (MCU) 2 (e.g. an integrated
circuit or a multi-chip module) which includes a central pro-
cessing unit (CPU) 6, a main memory 8, and a PPI 10, having
alogic area 12 and an internal memory 14. The CPU 6 and PPI
10 are both connected to a bus 16.

Also connected to the bus 16 are five exemplary peripher-
als: atimer 18, a DAC 20, a UART 22, a hardware encryption
engine 24, and a voltage comparator 26.

Alternatively, there may be a dedicated bus for signalling
tasks and events, separate from the CPU bus; i.e. the bus 16
may be formed of two or more separate buses.

The timer 18 has an output event register 28, an overflow
event register 30 and an input task registers 32. The DAC 20
has two conversion-finished event registers 36, 38 and two
trigger task registers 40, 42. The UART 22 has an RX received
event register 44, a TX complete event register 46, an RX
trigger task register 48 and a TX trigger task register 50. The
hardware encryption engine 24 has an encryption-finished
event register 52 and a trigger task register 54, while the
voltage comparator 26 has a single comparator output event
register 56. Some of the registers are single-bit registers,
while others can hold a multi-bit value. Of course, other
embodiments may have different peripherals, and the periph-
erals may have any number of event or task registers.

The peripheral registers share a memory addressing space
with the main memory 8 and the PPI memory 14, so that they
can be accessed using memory-mapped I/O by the PPI logic
12 and optionally by the CPU 6.

The UART peripheral 22 has logic 58 for implementing
shortcuts and an associated memory area 60.

Inuse, the CPU 6 might, for example, instruct the PP110 to
create a channel connecting one of the DAC 20 conversion-
finished events to the UART 22 trigger task, so that the UART
22 transmits data after a DAC conversion has completed. On
receiving this instruction, the PPI 10 creates a new entry in a
table held in its memory 14, linking the address of the DAC 20
conversion-finished register 36 and the address of the UART
22 trigger task register 48.

FIG. 2 shows a logical data structure which may be stored
in the PPI’s memory 14. It has a number of rows, each of
which contains a mapping number, an event register address
and a task register address.

The PPI logic 12 is configured to poll every event register
listed in the table periodically, to determine when a value in
the register changes. When a change is detected, the PPIlogic
12 writes the new value to all task registers which are mapped
to the particular event register in the table.

The PPI logic 12 may optionally be configured to perform
some processing on the new value in the event register and
instead write a result of the processing to one or more of the
task registers. For example, if the event register contains a
multi-bit value, the PPI logic 12 could be configured to deter-
mine whether it is higher than the previous value and write a
one bit to a single-bit task register in accordance with a
mapping in the memory 14. The PP110 could be instructed as
to what processing (if any) to perform by the CPU 6. The type
of processing may be stored as a further column in the map-
ping table.

When the CPU 6 acts to shut down a channel, it can do this
straightforwardly by causing the relevant entry in the table
stored in the PPI’s memory 14 to be erased. It does not need



US 9,087,051 B2

9

to instruct the peripherals directly (although it may of course
also do this, in some circumstances).

The event registers 44, 46 and task registers 48, 50 of the
UART 22 can be included in mappings stored in the PPI’s
memory 14. However, the UART 22 also has the facility to
implement shortcut channels between its own event registers
44, 46 and its task registers 48, 50 which by-pass the PPIlogic
12, and which can therefore act faster still. The PPI 10 can
instruct the UART 22 to establish, for example, a channel
between its RX received event register 44 and its TX trigger
register 50 so that it starts transmitting data as soon as it has
finished receiving data.

The UART 22 shortcut logic 58 (or the PPI 10 itself) writes
the addresses of the RX received event register 44 and the TX
trigger register 50 as a mapped pair in the UART’s memory
60. This may be formatted similarly to the mappings in the
PPI’s memory 14 (see FIG. 2). The UART 22 shortcut logic
58 then polls the addresses of any of its event registers 44, 46
stored in its memory 60, and, on detecting a change, writes a
value in the linked task register 48, 50, in a similar manner to
the PPI 10.

FIGS. 3-6 relate to an alternative embodiment in which the
PPI controller is connected to the peripherals using individual
lines for each event and task signal, rather than using
memory-mapped input/output as in FIG. 1. This second
embodiment nonetheless shares many common operating
principles with the first embodiment.

FIG. 3 shows m peripherals which are connected to the PPI.
The PPI provides n channels, each of which has an associated
event end-point register (EEP) and task end-point register
(TEP). Each of these registers can hold the address of a
register on one of the peripherals.

FIG. 4 provides more detail of elements associated with
one of these n channels. Each of the channels has a similar set
of elements. The channel’s EEP is connected to an event
signal lookup table which cross-references a set of peripheral
event register addresses with an internal event line identifier
which relates to one of the inputs to a multiplexer MUX) in
the PPI, associated with the channel. The PPI is configured to
set the MUX to select the input associated with the address
contained in the EEP.

Similarly, the channel’s TEP is connected to a task signal
lookup table which cross-references a set of peripheral task
register addresses with an internal task line identifier which
relates to one of the output of a demultiplexer (DEMUX) in
the PPI, associated with the channel. The PPI is configured to
set the DEMUX to select the output associated with the
address contained in the TEP

Two peripherals A, B are connected to the channel’s MUX.
Peripheral A can provide two event signals AE0, AE1, each of
which has its own line into the MUX. Peripheral B can pro-
vide a single event signal BEO which also has a line into the
MUX. Similar lines will connect to the multiplexers of the
other n-1 channels (not shown).

The channel’s DEMUX is connected to three output lines,
one leading to a task input AT0 on peripheral A and two
leading to different task inputs BT0, BT1 on peripheral B.

Within the PPI, the output from the MUX is connected
through a switch to the input to the DEMUX. The connection
is made when the switch is closed, so that an event signal (e.g.
a pulse) from one of the peripheral selected by the MUX is
passed to the DEMUX and thence on to a selected task input
of'one of the peripherals. The switch’s state is controlled by a
register, writable to by a CPU (not shown).

In some alternative arrangements, one channel may have
multiple demultiplexers, each connected to the output of the

20

25

40

45

55

65

10

channel’s MUX. In this way, a single event can be forked so
as to trigger a plurality of peripheral tasks.

FIG. 5 figuratively shows the mechanisms inside the PPI
whereby individual channels can be enabled and disabled,
and whereby groups of channel can be enabled and disabled.
Each channel i is represented as a path from an EEP to a TEP
(labelled CHi_EEP and CHi_TEP respectively) with a switch
in the path. The switch for a given channel corresponds to the
switch situated between the MUX and DEMUX in FIG. 4.

The bit-field register CHEN has one bit associated with
each channel switch. A CPU (or other component of the
system) can enable or disable a channel by writing the appro-
priate bit to the CHEN register.

Up to m groups of channels can be configured by setting
bits corresponding to the desired channels in the respective
channel group bit-field registers CHGO0 to CHGm. Each
group has an associated enable task and an associated disable
task. When triggered, these tasks enable or disable the chan-
nels which belong to that group. Each of these tasks has an
associated task register CHGOEN-CHGmEN (enable) and
CHGODIS-CHGmDIS (disable), which can be used to trigger
the task by a CPU writing to the register. Additionally, an
address of any of these task registers can be entered into a task
end-point register (TEP) in the PPI to create a map between it
and an event signal from a peripheral.

FIG. 6 figuratively illustrates connections associated with a
particular peripheral for linking to the PPI and for implement-
ing a shortcut feature. The shortcut components will be
described as being inside the peripheral but they could
equally be situated outside it.

For a particular task n, the peripheral receives an input line
from the PPI along which a task signal can be sent. The
peripheral also has a task register (TASK n) associated with
the task which sends a signal to trigger the task if firmware
running on a CPU writes a binary 1 to the task register. The
contents of the task register can also be updated when the PPI
sends a task signal or when a signal is received through the
shortcut mechanism. The line from the PPI and the output of
the task register are combined in a logical OR gate and sent to
the peripheral’s core, which carries out the task when a signal
is received. The OR gate can also receive a signal from a third
source: the shortcut switch, described below.

The peripheral core can output an event signal when in an
appropriate state. This is sent to an event register (EVENT m)
where it causes the contents of the register to change to
indicate that an event has been signalled. The same event
signal is also split and sent to a second OR gate which leads to
the shortcut switch and also to an event input line on the PPI.
This OR gate also receives an input from the event register,
which sends a signal to simulate the event having occurred if
firmware writes a binary 1 to the event register.

The state of the event register can also be sent via a switch
to an interrupt controller IntC, the details of which are not
relevant to the present invention.

As already mentioned, the output from the second OR gate
leads via a switch to an input to the first OR gate. This switch
is controlled by the value of an associated bit k in a bit-field
register SHORTS, associated with the peripheral. The register
SHORTS may be part of the peripheral or may be located
elsewhere in the system.

A CPU or other device (including potentially the PPI) can
use this mechanism to create a shortcut between the task
output of the peripheral core and the event input to the core by
writing a ‘1’ bit to the relevant shortcut position k in
SHORTS. This causes signals to be routed directly within or
adjacent the peripheral, without needing to create a channel
through the PPI, thereby saving clock cycles and improving



US 9,087,051 B2

11

responsiveness. The event signal is still also sent to the PPl in
case there are other tasks mapped to it.

In summary, a novel peripheral communication system has
been described, which has advantages over previously known
system.

The invention claimed is:

1. A peripheral communication system comprising:

a processor;

a plurality of peripherals, connected to the processor; and

a programmable peripheral interconnect, connected to

each peripheral, wherein:

at least one of the peripherals is event-generating, being

configured to signal an event to the programmable
peripheral interconnect;
at least one of the peripherals is task-receiving, being con-
figured to respond to a task signal from the program-
mable peripheral interconnect by performing a task;

said task-receiving peripheral comprises a task register,
addressable by the processor, associated with the task,
and is configured to perform the task in response to a
change in the contents of the task register;
the programmable peripheral interconnect is configured to
access a memory in which a mapping can be stored
between an event of a first peripheral and a task of a
second peripheral, the mapping comprising (i) an iden-
tification of the event of the first peripheral, and (ii) an
address of a task register associated with the task; and

the programmable peripheral interconnect is configured so
that, if a mapping is stored in memory between an event
of a first peripheral and a task of a second peripheral, the
interconnect will provide a channel by sending a task
signal to the second peripheral in response to a signal of
the event from the first peripheral.

2. The peripheral communication system of claim 1,
wherein the event-generating peripheral comprises an event
register, addressable by the processor, associated with the
event, and wherein said mapping comprises the address of an
event register associated with the event.

3. The peripheral communication system of claim 1,
wherein the programmable peripheral interconnect is con-
nected to the peripherals by respective lines for each event
and task.

4. The peripheral communication system of claim 1,
wherein the programmable peripheral interconnect com-
prises at least one multiplexer and at least one demultiplexer
and is configured to control the multiplexer and the demulti-
plexer in accordance with the mapping that can be stored in
the memory.

5. The peripheral communication system of claim 1,
wherein the programmable peripheral interconnect is config-
ured to receive an event signal from a peripheral by detecting
a change in the contents of an associated event register on the
peripheral.

6. The peripheral communication system of claim 1,
wherein the programmable peripheral interconnect is config-
ured to send a task signal to a peripheral by changing the
contents of an associated task register on the peripheral.

7. The peripheral communication system of claim 1,
wherein each said event or task signal is an electrical pulse.

8. The peripheral communication system of claim 1,
wherein the memory in which the mapping can be stored
comprises one or more registers which are addressable by the
processor.

9. The peripheral communication system of claim 1,
wherein the programmable peripheral interconnect is config-
ured to access a lookup table to determine a line or port

15

30

40

45

55

65

12

corresponding to a register address contained in the mapping
that can be stored in the memory.

10. The peripheral communication system of claim 1,
wherein the programmable peripheral interconnect com-
prises a mechanism for enabling or disabling a channel.

11. The peripheral communication system of claim 1,
wherein the programmable peripheral interconnect com-
prises a mechanism for collectively enabling and disabling a
group of one or more channels.

12. The peripheral communication system of claim 11,
wherein the programmable peripheral interconnect com-
prises one or more registers or memory areas, each capable of
storing a plurality of channel identifiers for defining a respec-
tive group of channels.

13. The peripheral communication system of claim 11,
configured so that a single instruction or action by the pro-
cessor can cause all the channels in a group to be enabled or
disabled by the programmable peripheral interconnect.

14. The peripheral communication system of claim 11,
wherein the programmable peripheral interconnect com-
prises, for each group of channels, a respective incoming
group-enable task signal line and a respective incoming
group-disable task signal line.

15. The peripheral communication system of claim 11,
wherein the programmable peripheral interconnect can be
configured so that a group of channels can be enabled or
disabled in response to the programmable peripheral inter-
connect receiving an event signal from a peripheral.

16. The peripheral communication system of claim 11,
wherein the programmable peripheral interconnect com-
prises a task register associated with the task of enabling or
disabling a group of channels, and wherein the peripheral
interconnect is configured so that, if a mapping is stored in
memory comprising an identification of an event of a periph-
eral and the address of said task register, the interconnect will
enable or disable the group of channels in response to a signal
of the event from the peripheral.

17. The peripheral communication system of claim 1, con-
figured so that, for at least one of the peripherals, an event
signal sent from the peripheral is received as a task signal by
the same peripheral without passing through the program-
mable peripheral interconnect.

18. A programmable peripheral interconnect configured
for connection to each of a plurality of peripherals, wherein:

at least one of the peripherals is event-generating, being

configured to signal an event to the programmable
peripheral interconnect;
at least one of the peripherals is task-receiving, being con-
figured to respond to a task signal from the program-
mable peripheral interconnect by performing a task;

said task-receiving peripheral comprises a task register,
addressable by a processor, associated with the task, and
is configured to perform the task in response to a change
in the contents of the task register;
the programmable peripheral interconnect is configured to
access a memory in which a mapping can be stored
between an event of a first peripheral and a task of a
second peripheral, the mapping comprising (i) an iden-
tification of the event of the first peripheral, and (ii) an
address of a task register associated with the task; and

the programmable peripheral interconnect is configured so
that, if a mapping is stored in memory between an event
of a first peripheral and a task of a second peripheral, the
interconnect will respond to a signal of the event by
sending a task signal to the second peripheral.

19. The programmable peripheral interconnect of claim 18,
wherein the event-generating peripheral comprises an event



US 9,087,051 B2

13

register, addressable by the processor, associated with the
event, and wherein said mapping comprises the address of an
event register associated with the event.

20. The programmable peripheral interconnect of claim 18,
wherein the programmable peripheral interconnect com-
prises respective ports for each event and task.

21. The programmable peripheral interconnect of claim 18,
comprising at least one multiplexer and at least one demulti-
plexer, and configured to control the multiplexer and the
demultiplexer in accordance with the mapping stored in the
memory.

22. The programmable peripheral interconnect of claim 18,
wherein the programmable peripheral interconnect is config-
ured to send a task signal to a peripheral by changing the
contents of an associated task register on the peripheral.

23. The programmable peripheral interconnect of claim 18,
wherein the memory in which the mapping can be stored
comprises one or more registers.

24. The programmable peripheral interconnect of claim 18,
configured to access a lookup table to determine a line or port
corresponding to a register address contained in the mapping
that can be stored in the memory.

25. The programmable peripheral interconnect of claim 18,
wherein the programmable peripheral interconnect com-
prises a mechanism for enabling or disabling a channel.

26. The programmable peripheral interconnect of claim 18,
comprising a mechanism for collectively enabling and dis-
abling a group of one or more channels.

27. The programmable peripheral interconnect of claim 26,
comprising one or more registers or memory areas, each

10

15

20

25

14

capable of storing a plurality of channel identifiers for defin-
ing a respective group of channels.

28. The programmable peripheral interconnect of claim 26,
configured to enable or disable all the channels in a group in
response to a single instruction or action by a processor.

29. The programmable peripheral interconnect of claim 26,
comprising, for each group of channels, a respective group-
enable task signal input port and a respective group-disable
task signal input port.

30. The programmable peripheral interconnect of claim 26,
comprising a mechanism for configuring the interconnect so
that a group of channels can be enabled or disabled in
response to receiving an event signal from a peripheral.

31. The programmable peripheral interconnect of claim 26,
comprising a task register associated with the task of enabling
or disabling a group of channels, and configured so that, ifa
mapping is stored in memory comprising an identification of
an event of a peripheral and the address of said task register,
the interconnect will enable or disable the group of channels
in response to a signal of the event from the peripheral.

32. A method of configuring a connection between an event
of a first peripheral and a task of a second peripheral in the
peripheral communication system of claim 1, the method
comprising storing a mapping in memory comprising (i) an
identification of the event of the first peripheral, and (ii) an
address of a task register associated with the task of the
second peripheral.



